Core-scale solute transport model selection using Monte Carlo analysis

نویسندگان

  • Bwalya Malama
  • Kristopher L. Kuhlman
  • Scott C. James
چکیده

[1] Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium ðHÞ and sodium-22 ðNa Þ, and the retarding solute uranium-232 ðUÞ. The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single-porosity and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows singleporosity and double-porosity models are structurally deficient, yielding late-time residual bias that grows with time. On the other hand, the multirate model yields unbiased predictions consistent with the late-time -5=2 slope diagnostic of multirate mass transfer. The analysis indicates the multirate model is better suited to describing core-scale solute breakthrough in the Culebra Dolomite than the other two models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Monte Carlo method for dislocation migration in the presence of solute

We present a kinetic Monte Carlo method for simulating dislocation motion in alloys within the framework of the kink model. The model considers the glide of a dislocation in a static, three-dimensional solute atom atmosphere. It includes both a description of the short-range interaction between a dislocation core and the solute and long-range solute-dislocation interactions arising from the int...

متن کامل

A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations

Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage model...

متن کامل

Impact of Permeability on Flow and Solute Transport in Highly Heterogeneous Aquifer

The impact of permeability on solute transport process in a highly heterogeneous aquifer was analyzed using the Monte-Carlo method. The logarithm of the permeability (lnK) of aquifer was considered as a non-stationary field with increments being a truncated fractional Lévy motion (fLm) generated using the SRA3DC code. MODFLOW and MT3DMS code were used to solve the flow and solute equations, res...

متن کامل

Density anomaly of charged hard spheres of different diameters in a mixture with core-softened model solvent. Monte Carlo simulation results

Very recently the effect of equisized charged hard sphere solutes in a mixture with core-softened fluid model on the structural and thermodynamic anomalies of the system has been explored in detail by using Monte Carlo simulations and integral equations theory [J. Chem. Phys., 2012, 137, 244502]. Our objective of the present short work is to complement this study by considering univalent ions o...

متن کامل

Solute spreading in nonstationary flows in bounded, heterogeneous unsaturated-saturated media

[1] It is commonly assumed in stochastic solute (advective) transport models that either the velocity field is stationary (statistically homogeneous) or the mean flow is unidirectional. In this study, using a Lagrangian approach, we develop a general stochastic model for transport in variably saturated flow in randomly heterogeneous porous media. The mean flow in the model is multidirectional, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013